Alkali-Silica-Reaction – A Multidisciplinary Approach

Alkali-silica reaction (ASR) causes cracking and with it substantial damages in concrete structures worldwide causing costs due to repair or replacement. Although ASR is one of the major focal points of concrete research since the first cases were reported in the 1940's, our knowledge is still not sufficient to understand various aspects of the reaction. This includes the understanding about various steps in the mechanisms of the reaction, the products formed and damage development. In an ASR-project funded by the Swiss National Science Foundation (SNF CRSII5_171018) a multidisciplinary approach was used to study ASR from the nano-to the metre-scale using dissolution experiments, thermodynamic modelling, structural analysis, 2-D characterization, 3D imaging and computational modelling. Six subprojects were conducted at four different institutes benefiting from the synergistic effects provided by a close collaboration. In the webinar we will present selected highlights of the project.





Aggregate dissolution, Mahsa Bagheri

Dissolution experiments and pore solution analysis provide insight on the effect of different ions on SiO2 dissolution.


Initially formed products, Solène Barbotin

Using a combination of focus ion beam and transmission electron microscopy the composition and structure of the initially formed ASR products are analyzed with a resolution down to the sub-micrometer range.


Atomic structure of ASR products, Guoqing Geng and Francesco Marafatto

The atomic structure of naturally formed and synthesized ASR products are identified by using spectroscopic techniques at synchrotrons.


Synthetic ASR products, Zhenguo Shi

The synthesis of amorphous and crystalline ASR products shows the effect of temperature on their structure and provides the base for a comparison with naturally formed products.


ASR products and cracking: a 4D view, Mahdieh Shakoorioskooie

The formation of ASR products and crack propagation are followed by high-resolution X-ray micro-tomography providing a 4D-view of the reaction.


Numerical modelling of mechanics, Emil Gallyamov

The numerical modelling of mechanics is based on realistic microstructure provided by 3D-analysis of crack formation.


Bagheri, M., Lothenbach, B., Shakoorioskooie, M., Leemann, A., Scrivener, K. (2021). Use of scratch tracking method to study the dissolution of alpine aggregates subject to alkali silica reaction. Cement and Concrete Composites, accepted, 12th Sepember 2021.

Geng, G., Barbotin, S., Shakoorioskooie, M., Shi, Z., Leemann, A., Sanchez, D. F., ... & Dähn, R. (2021). An in-situ 3D micro-XRD investigation of water uptake by alkali-silica-reaction (ASR) product. Cement and Concrete Research, 141, 106331.

Rezakhani, R., Gallyamov, E., & Molinari, J. F. (2021). Meso-scale finite element modeling of Alkali-Silica-Reaction. Construction and Building Materials, 278, 122244.

Shakoorioskooie, M., , Griffa, M, Leemann, A, Zboray, R, Lura, P. (2021) Alkali-silica reaction products and cracks: X-ray micro-tomography-based analysis of their spatial-temporal evolution at a mesoscale. Cement and Concrete Research, accepted.

Shi, Z., Ma, B., & Lothenbach, B. (2021). Effect of Al on the formation and structure of alkali-silica reaction products. Cement and Concrete Research, 140, 106311.

Gallyamov, E. R., Ramos, A. C., Corrado, M., Rezakhani, R., & Molinari, J. F. (2020). Multi-scale modelling of concrete structures affected by alkali-silica reaction: Coupling the mesoscopic damage evolution and the macroscopic concrete deterioration. International Journal of Solids and Structures, 207, 262-278.

Boehm-Courjault, E., Barbotin, S., Leemann, A., & Scrivener, K. (2020). Microstructure, crystallinity and composition of alkali-silica reaction products in concrete determined by transmission electron microscopy. Cement and Concrete Research, 130, 105988 (8 pp.)

Geng, G., Shi, Z., Leemann, A., Borca, C., Huthwelker, T., Glazyrin, K., Pekov, I. V., Churakov, S., Lothenbach, B., Dähn, R., & Wieland, E. (2020). Atomistic structure of alkali-silica reaction products refined from X-ray diffraction and micro X-ray absorption data. Cement and Concrete Research, 129, 105958 (11 pp.)

Geng, G., Shi, Z., Leemann, A., Glazyrin, K., Kleppe, A., Daisenberger, D., Churakov, S., Lothenbach, B., Wieland, E., & Dähn, R. (2020). Mechanical behavior and phase change of alkali-silica reaction products under hydrostatic compression. Acta Crystallographica Section B: Structural Science, Crystal Engineering and Materials, 76(4), 674-682

Leemann, A., Shi, Z., & Lindgård, J. (2020). Characterization of amorphous and crystalline ASR products formed in concrete aggregates. Cement and Concrete Research, 137, 106190 (10 pp.)

Leemann, A., Shi, Z., Wyrzykowski, M., & Winnefeld, F. (2020). Moisture stability of crystalline alkali-silica reaction products formed in concrete exposed to natural environment. Materials & Design, 109066

Shi, Z., Park, S., Lothenbach, B., & Leemann, A. (2020). Formation of shlykovite and ASR-P1 in concrete under accelerated alkali-silica reaction at 60 and 80 °C. Cement and Concrete Research, 137, 106213 (10 pp.)

Shi, Z., Lothenbach, B. (2020). The combined effect of potassium, sodium and calcium on alkali-silica reaction products. Cement and Concrete Research, 127, 105914.

Shi, Z., Leemann, A., Rentsch, D., & Lothenbach, B. (2020). Synthesis of alkali-silica reaction product structurally identical to that formed in field concrete. Materials and Design, 190, 108562 (9 pp.)

Shi, Z., Geng, G., Leemann, A., Lothenbach, B. (2019) Synthesis, characterization, and properties of alkali-silica reaction products. Cement and Concrete Research, 121, 58-71.

Shi, Z., Lothenbach, B. (2019). The role of calcium on the formation of alkali-silica reaction products. Cement and Concrete Research, 126, 105898.








Project Leader

Andreas Leemann


Barbara Lothenbach
Emil Gallyamov
Emmanuelle Boehm
Erich Wieland
Francesco Marafatto
Guoqing Geng
Jean-François Molinari
Karen Scrivener
Mahdieh Shakoori Oskooie
Masha Bagheri
Michele Griffa
Pietro Lura
Rainer Dähn
Solene Barbotin
Robert Zboray
Zhenguo Shi